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PREFACE

Plasma processing of materials has matured in recent decades at an incredible
speed. Conventional techniques have been upscaled, in situ monitoring and
computer-aided feedback controls have become standard, and new processing
methods have been invented. The turn of the millennium is a welcome occasion
to step back for a moment from the fast pace of day-to-day operation of
research, development, and high-tech production. Before we ``immerse''
ourselves into technology details, let's step back and have a look at the big
picture. Materials research and development is a cornerstone of modern
industry; it provides enabling technologies for the information age. There
would be no high-speed computing, wide bandwidth network connections,
wireless communication, and the like without modern materials technologies.
Innovative process solutions and materials are also developed for the more
traditional areas in manufacturing and transportation, including the space and
automotive industry. At the same time, scientists, engineers, and economists
are today more aware than ever of the environmental impact of modern
technologies. In fact, the need to replace technologies that have severe negative
environmental impact has become a major driving force for the development of
better alternatives.

One of the emerging technologies is plasma immersion ion implantation
(PIII), also known as plasma source ion implantation (PSII) or plasma-based
ion implantation (PBII). In order to appreciate PIII, we will start with a quick
comparison with conventional beamline ion implantation. Energetic ion beams
are obtained from ion beam sources by extracting ions from a plasma and
accelerating them using the electric ®eld across a single or multiple aperture
grid system. The electric potential di�erence between the grids is high: often
tens or hundreds of kilovolts, and sometimes the ion energy is further increased
to the mega-electron-volt range utilizing accelerator stages. The ion beam cross
section is usually small (compared to the substrate area), with three important
consequences: (1) feasibility of magnetic ion charge and mass separation, (2)
the need for scanning the beam across the surface area to obtain large
implantation areas with su�cient dose uniformity, and (3) low dose rates and
long processing times. PIII, in contrast, is a very di�erent approach that leads
to opposite features. The substrate to be implanted is immersed in the
processing plasma, and negative high-voltage pulses are applied so as to form a
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conformal electric sheath (space charge layer) between the substrate and the
plasma. Ions located in or entering the sheath from the plasma side are
accelerated by the sheath's electric ®eld. They are implanted into the substrate
when they impact the substrate. The fascinating idea of this approach is to
eliminate the need for ion beam extraction, focusing, transport, scanning, and
other manipulation. These are some of the advantages of PIII. Other features,
including drawbacks and limitations, will be discussed in detail in this
handbook.

Plasma calculations by Melvin Widner at Oak Ridge National Laboratory
in the 1960s and the pioneering work of Richard Adler at Mission Research
Corporation in the early 1980s prepared the ®eld. However, it was the work of
John Conrad and co-workers at the University of Wisconsin at Madison that
was pivotal for the birth and recognition of the PIII concept. They reported on
the ®rst plasma immersion ion implantation results with nitrogen plasmas in
1986. Nitrogen plasmas were dominant in the early years because one could
form subsurface nitrides at relatively low temperatures with excellent
mechanical and chemical properties. In the following years, the physical basis
has been developed by a number of groups, and new applications have been
explored. I'm grateful that John agreed to write the ®rst chapter of this
handbook, describing the early development of PIII and its relation to other
techniques, in particular to ion nitriding. He puts the development of PIII&D
in a historical perspective by comparing it with traditional beamline ion
implantation. He outlines the physics and original applications of PIII.

The early PIII work used gaseous plasmas such as nitrogen plasmas. By
extending PIII to condensable (metal or organometallic) plasmas and vapors,
the ®eld was expanded from pure ion implantation to thin-®lm deposition. As a
consequence, the letter D for deposition was included in the acronym, now
PIII&D. The title of this handbook, plasma immersion ion implantation and
deposition, re¯ects this development.

If condensable plasma species such as metal ions are involved, this concept
translates into ion implantation and ion deposition phases. Pulsing the
substrate implies high-energy phases (bias pulse on, ion implantation) and low-
energy phases (bias pulse o�, ion deposition). Figure 1 illustrates the hybrid
character of PIII&D. In general, PIII&D equipment and processes may be
operated in a pure plasma immersion ion implantation (PIII) mode or a pure
plasma immersion ion deposition (PIID) mode (the latter has existed before
PIII was invented, as pointed out in Chapter 1). The following acronyms are
used in this book: PIII for plasma immersion ion implantation with gaseous
plasmas, PIIID for plasma immersion ion implantation and deposition with
condensable, ®lm-forming plasmas and vapors, and PIII&D when generically
referring to both.

Today, at the turn of the millennium, PIII&D in its various forms has
become a mature technology with ®rst applications of industrial size. Our
knowledge has been compiled and described in several book chapters, and
about 1000 articles have been published in a variety of scienti®c journals.
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Several International Workshops on Plasma-Based Ion Implantation have
demonstrated the vitality of the ®eld. The time has come to consolidate the
work in a single monograph dedicated to this ®eld; this handbook describes the
PIII&D work from its beginnings to the end of the twentieth century.

Plasma physicists, materials scientists, chemists, pulse-power engineers, and
many others have contributed to the development of PIII&D, a ®eld at the
interface of several scienti®c disciplines. It seemed mandatory to include a
rather large number of authors and draw from their di�erent and
complementary experience and expertise.

This book is composed of three parts: Fundamentals, Technology, and
Applications. In Part I, the basics of plasmas and plasma sheaths are
introduced by Michael Lieberman. Background information on ion implanta-
tion and thin-®lm formation is provided in Chapter 3, coordinated by Michael
Nastasi. In Chapter 4, the fundamental processes of PIII and their extension to
PIIID are introduced by Blake Wood and co-authors. This chapter is the core
of the handbook; it is not coincidental that its title is practically identical with
the title of the Handbook. If you are familiar with the basics of plasmas,
sheaths, ion implantation and thin-®lm deposition, and you would like to learn
about PIII&D, I would recommend that you go straight to Chapter 4. Chapter
5, coordinated by Kevin Walter, gives an overview of materials analysis and
testing techniques. This chapter will be found useful by those who want to be
reminded of the various methods for determining the qualitative and
quantitative e�ects of PIII&D treatment. Of course, all of the chapters contain
numerous references that allow the reader to probe deeper in the original
literature. Chapter 5 concludes the fundamentals part of this handbook.

Figure 1 Relation of PIII&D to ion implantation and thin-®lm deposition.
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In Part II, Jesse Matossian and co-authors discuss design issues of PIII&D
processing chambers, process control, part handling, and other information
relevant to the practical design and use of PIII&D vacuum equipment. In
Chapter 7, coordinated by myself, plasma sources and the technical means of
plasma production and control are discussed. Chapter 8, coordinated by Dan
Goebel, deals with the pulser technology necessary to achieve suitable substrate
bias pulses. The Technology part is concluded by Chapter 9, coordinated by
Dexter Beals, in which safety and health issues are discussed that are related to
the variety of PIII&D processes.

Part III starts with nonsemiconductor applications such as the reduction of
wear and corrosion of PIII-treated workpieces, the core application of PIII in
its early years. Chapter 10, coordinated by Kumar Sridharan, also includes
applications of PIIID such as the deposition of compound layers and ®ne-
tuned hard amorphous (diamondlike) carbon ®lms. Finally, Chapter 11,
coordinated by Paul Chu, describes modern applications in semiconductor
research and industry such as the PIII formation of ultrashallow junctions.

Twenty-nine distinguished authors from six countries have contributed to
this book. I feel privileged that I had the opportunity to work with them and
that I was given the honor of coordinating and editing this handbook. The
authors are portrayed in short biographies compiled in Appendix D.

Many individuals, governmental research organizations, and private
corporations supported PIII&D research and publications, including, but not
limited to, the U.S. Department of Energy, Department of Defense,
Department of Commerce, the National Science Foundation, the State of
Wisconsin, General Motors, Sematech, North Star Research Corporation,
Diversi®ed Technologies Inc., Poole Ventura, Empire Hard Chrome, and
Hughes Research Laboratories. Development of PI3 in Australia has been
supported by the Australian Nuclear Science and Technology Organisation,
and the Industry Research and Development Board of Australia. PIII-related
R&D in Germany has been supported by the Bundesministerium f�ur Bildung,
Wissenschaft, Forschung und Technologie (Federal Ministry for Education,
Science, Research, and Technology, BMBF) and by the Deutsche Forschungs-
gemeinschaft (German Research Community, DFG). Support from the U.S.
Department of Energy, O�ce of Basic Energy Sciences, Division of Material
Sciences, is gratefully acknowledged by Mike Nastasi for the writing of Section
3.1. I personally would like to thank Ian Brown, Group Leader at Lawrence
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